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Several studies have applied various techniques to model and predict water consumption in urban areas 
where there is water distribution network (WDN). This study examines the performance of machine learning 
models for predicting volume of water consumed by urban poor households where there is no WDN. 
Historical data of daily volume of water consumed was gathered through questionnaires, and integrated with 
socioeconomic data, weather data, property data and geospatial data. The datasets were passed through 
Pearson Correlation algorithm to select few features that correlate with the target variable. The selected 
features were inputted into four predictive models – Multilinear Regression (MLR), Random Forest (RF), 
Support Vector Regression (SVR), and Artificial Neural Networks (ANN).  Three error metrics, Mean Absolute 
Error (MAE), Root Mean Squared Error (RMSE) and R squared (R2) score, were used to measure the model 
performances. The models were validated with dataset collected where there is WDN. All four models 
performed very well during training, as they produced RMSE of 110 litres, 83 litres, 98 litres and 97 litres 
respectively, and R2 score of 53%, 73%, 52% and 63% respectively. Significance test carried out on the results 
at 95% confidence level shows that there is no significant difference between model performance where 
there is WDN and where there is no WDN, which also confirms the validity of the dataset collected where 
there is no WDN. 
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1. INTRODUCTION 

Clean water consumption by the poor directly affects their wellbeing, 
productivity and ability to escape the trap of poverty. A group researcher 
discovered that return-trip travel time greater than 30 minutes in order to 
fetch clean water was significantly associated with moderate-to-severe 
diarrhoea in Kenya (Nygren et al., 2016). While launching the 2023 UN 
Water Report, UNICEF in Nigeria declares that 78 million children suffer 
from poor water access, and are at risk of water-related crises (UNICEF, 
2023).  

Figure 1: The Sustainable Development Goals, highlighting goal 1 and 
goal 6 (Source: UN, 2015) 

This is a reason the seventeen United Nations sustainable development 
goals (UN SDGs) shown in Figure 1.1 has water running through them. 
From poverty eradication in goal 1 to partnership for the goals in goal 17, 
water and the various opportunities it provides runs through the goals like 
lubricating oil, ensuring all the parts work together for smooth progress 
towards their achievements. UNESCO World Water Assessment 
Programme (WWAP, 2015) links poverty to lack of access to clean water, 
and access to clean water as part of the solution.  

One way of improving access to clean water is expanding water 
distribution network (WDN) to connect every household to water 
services. It is the most effective way of improving sanitation and reducing 
transmission of water borne diseases (Hutton, 2004). The problem of 
access to clean water among the urban poor in low-income countries 
persists partly because there is no WDN in poor urban areas, and therefore 
no empirical data about the volume of water consumed by poor people. 
This leads them to seek water from different sources, such as water 
vendors, borehole water kiosks and well (UNDP,2015). They pay heavily 
for drinking water, which is provided by private businesses through 
vending (Chukwu, 2015). Since there is no automatic way of gathering 
data about volume of water consumed, it is difficult to model and predict 
volume of water consumed in poor urban areas. Yet it is important to 
model volume of water consumed in a poor urban area before a decision 
to extend water distribution network (WDN) to the area.  

The aim of this study is to examine performance of machine learning 
models for predicting volume of water consumed by poor urban 
households where there is no WDN. Though there is WDN in rich areas 
nearby, yet the urban poor live in slums where there is no WDN, and so 
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they pay heavily for drinking water, which is provided by private 
businesses through vending. Safe water consumption directly affects 
people’s wellbeing, productivity and ability to escape the trap of poverty. 
United Nations-Sustainable Development Goals (UN-SDG) recommends 
equal right to quality water for both the rich and the poor (WGF, 2012).  
This study is necessary to provide solution to the problem of access to 
clean water within poor urban areas in low-income countries. Accurately 
predicting volume of water consumed is the first step towards extending 
WDN to poor urban areas, and solving the problem of lack of access to 
clean water. 

2. MATERIAL AND METHODS

2.1 Study Area 

Nyanya-Mararaba is a border town between Federal Capital Territory 
(FCT) and Nasarawa State in Nigeria. It lies between Latitudes 8o24’54’’N 
and 9o18’48’’N, and Longitude 6o44’25’’E and 7o35’15’’E. The town’s 
climate is largely sunny with diurnal temperatures ranging from 18.45 to 
36.05 degrees Celsius. Rainfall varies from 0.0 to 400.0 mm/month. The 
climate is due to the town’s location at the transition zone between the 
‘humid’ south and the ‘sub-humid’ north. 

Figure 2: Map of Nigeria and Federal Capital Territory, showing Nyanya-Mararaba Town 

The growing population of the Federal Capital City is concentrated at 
Nyanya-Mararaba town where an estimated 70% of the people working in 
the city live. Covering an area of 14 square kilometers, Nyanya-Mararaba 
is a peri-urban town consisting of informal dwellings where many poor 
people find shelter.  

2.2 Methods 

2.2.1 Datasets 

2.2.1.1 Nyanya-Mararaba Dataset 

This study made use of Nyanya-Mararaba dataset described in Taiwo et. al 
(2023). The dataset includes both primary and secondary sources of data. 
Primary sources of data include questionnaires administered to 
households in the study area, location of households and water points, 
collected with hand-held GPS. Secondary sources of data include: rainfall 
data downloaded from www.chrsdata.eng.uci.edu; digital elevation model 

downloaded from https://earthexplorer.usgs.gov/; Temperature data 
downloaded from www.weatherspark.com; and land use land cover 
(LULC) maps downloaded from https://maps.arcgis.com. Nyanya-
Mararaba dataset; which consists of socioeconomic data, weather data, 
property data, historic data and geospatial data collected with 
questionnaires in Nyanya-Mararaba Town. 

2.2.1.2 Karu Dataset 

A second dataset, used as a control dataset, was collected in Karu Town 
where there is WDN. The dataset was collected from FCT Water Board in 
form of consumer bills. A bill contains the following data: date, previous 
meter reading, current meter reading, days of usage, multiplier, cubic unit 
consumed and current charge. The dataset consists of 2000 records 
covering January to December 2022. This dataset was used to validate 
Nyanya-Mararaba dataset where there is no WDN. Table 1 and Table 2 
highlight the first ten records in Karu dataset before and after data 
preprocessing. 

Table 1: Karu Dataset – Raw Data 

Id Service Type Date 
Days Of 
Usage 

Previous 
Meter 

Reading 

Current 
Meter 

Reading 
Multiplier 

Cubic Unit 
Consumed 

Current 
Charge 

KR1 DOMESTIC 17/01/2022 23 97782 97798 110 16 1760 

KR2 DOMESTIC 01/01/2022 24 58545 58578 110 33 3630 

KR3 DOMESTIC 21/01/2022 21 66347 66358 110 11 1210 

KR4 DOMESTIC 12/01/2022 20 13269 13310 110 41 4510 

KR5 DOMESTIC 05/01/2022 25 42475 42506 110 31 3410 

KR6 DOMESTIC 17/01/2022 20 47886 47924 110 38 4180 

KR7 DOMESTIC 02/01/2022 21 59153 59195 110 42 4620 

KR8 DOMESTIC 29/01/2022 28 43750 43768 110 18 1980 

KR9 DOMESTIC 07/01/2022 27 86046 86067 110 21 2310 

KR10 DOMESTIC 05/01/2022 24 98300 98335 110 35 3850 

Source: FCT Water Board (2023) 

http://www.chrsdata.eng.uci.edui/
https://earthexplorer.usgs.gov/
http://www.weatherspark.com/
https://maps.arcgis.com/
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Table 2: Karu dataset after data cleaning and feature creation 

ID DATE 
Days of 
usage 

Rainfall Ave temp 
Volume in 

cubic meter 
Volume in liter 

per day 
Amount spent 

per day 

KR1 17/01/2022 23 0 75 16 695 80 

KR2 01/01/2022 24 0 75 33 1375 151 

KR3 21/01/2022 21 0 75 11 523 57 

KR4 12/01/2022 20 0 75 41 2050 290 

KR5 05/01/2022 25 0 75 31 1240 136 

KR6 17/01/2022 20 0 75 38 1900 209 

KR7 02/01/2022 21 0 75 42 2000 220 

KR8 29/01/2022 28 0 75 18 642 55 

KR9 07/01/2022 27 0 75 21 777 85 

KR10 05/01/2022 24 0 75 35 1458 160 

2.2.2 Data Pre-processing 

Data pre-processing includes feature engineering processes, which 
include data cleaning, data scaling, categorical encoding and feature 
creation in Geographic Information System (GIS). Four new features were 
created: volume of water consumed in litre per day, shortest distance, 
height difference, and LULC type. It is necessary to create these features 
for the following reasons: One, volume of water consumed is better 
measured in litre per capita per day, which is deduced from volume of 
water consumed per day that is retrieved from the questionnaires. Two, 

 shortest distance, height difference and LULC type add geospatial 
variables to the dataset. 

2.2.2.1 All Features 

After feature creation and transformation, there were 30 features all 
together as shown in Table 3. Volume in liter per day is the dependent 
variable, the feature to be predicted. Thus, there are 29 independent 
variables, that is, predictors or explanatory features. 

Table 3: All features identified in the study 

Feature Type Description 

Volume Historic Volume of water consumed in liter per capita per day 

ID Socioeconomic Identification number of each household 

Household income Socioeconomic Total income of each household in a month 

Education Socioeconomic Highest level of education in the household 

Household size Socioeconomic Number of persons in the household 

Rainfall Weather Amount of rainfall per month 

Ave temp Weather Average temperature per month 

Travel time Geospatial Time it takes to get water and return 

Amount spent Socioeconomic Amount spent on water per day 

Willingness to pay Socioeconomic 
The amount of money a household is willing to pay if 

it is connected to piped water network 

Kitchen Sink Property Presence of water sink in the kitchen 

ToiletWC Property Presence of WC system in the toilet 

Garden Property Presence of garden in the yard 

Car Property Ownership of motor vehicle 

Shortest distance Geospatial 
Shortest distance to the nearest water point from a 

household 

Height diff Geospatial 
Difference between the household elevation and the 

nearest water point 

Gender_male Socioeconomic Gender of respondent – male 

Gender_female Socioeconomic Gender of respondent – female 

Method_carried Socioeconomic Method of accessing water – carried from water point 

Method_delivered Socioeconomic Method of accessing water – delivered to household 

Method_inyard Socioeconomic Method of accessing water – water point in yard 

Method_waterboard Socioeconomic 
Method of accessing water – piped water to the 

household 

Method_well Socioeconomic Method of accessing water – well 

Availability_not_often Socioeconomic Availability of water – not often 

Availability_often Socioeconomic Availability of water – often 

Quality_poor Socioeconomic Quality of water – poor 

Quality_fair Socioeconomic Quality of water – fair 

Quality_good Socioeconomic Quality of water – good 

Quality_very good Socioeconomic Quality of water – very good 

LULC Geospatial Land use land cover type 
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2.3 Feature Selection 

A group researcher carried out experiments with Nyanya-Mararaba 
datasets to select few best features that produced optimal model 
performance (Taiwo et al., 2023). They experimented with five feature 
selection techniques: Pearson Correlation (PC), Information Gain (IG), 
Recursive Feature Elimination (RFE), Least Absolute Shrinkage and 
Selection Operator (LASSO) and Principal Component Analysis (PCA). The 
experiments selected nine features out of the twenty-nine; that is, 
household income, household size, rainfall, average temperature, travel 
time, amount spent, willingness to pay, shortest distance and height 
difference. These formed the data input in the machine learning models.  

2.4 Machine Learning Techniques (MLT) 

Four machine learning techniques (Multilinear Regression, Random 
Forest, Support Vector Regression, and Artificial Neural Network) were 
chosen for this work. The four MLT were chosen because they represent 
MLT in the supervised learning category for regression analysis, and it has 
been shown that Neural Network-based techniques outperform 
conventional techniques and provide effective solutions for many 
geospatial data analysis tasks (Kiwelekar et al., 2020).   

2.4.1 Multilinear Regression (MLR) 

Linear regression is a technique for investigating the relationship between 
an independent variable or feature and a dependent variable or outcome. 
Linear regression model describes the relationship between a dependent 
variable 𝒚 and independent variables 𝒙 with a straight line that is defined 
by equation (1): 

𝒚 = 𝑤𝑜+ 𝑤1𝒙   (1) 

In this expression, 𝒚 is the vector of the response values. The 𝒙 symbol 
describes the matrix of features which the algorithm uses to predict the 𝒚 
vector. 𝒙 is a matrix that contains only numeric values. 𝑤𝑜 and 𝑤1 are 
parameters that the linear regression uses to create the prediction. 
Features are real-world entities that are being modelled. The ordinary 
least squares (OLS) method is used to estimate 𝑤𝑜 and  𝑤1. The OLS 
method seeks to minimize the sum of the squared residuals. As shown in 
Figure 2-5, the distance from each data point to the regression line is 
calculated, squared, and all squared errors are summed together. As in 
most linear regression models, the objective is to minimize the sum of 
squared errors, that is, 

Min∑𝑦𝑖
𝑝

𝑚

𝑖=1

− 𝑦𝑖
𝑜 , )2  (2) 

In a multilinear regression (MLR), where there are multiple features, the 
space now spans multiple dimensions, with each dimension being a 
feature. For instance, for five features the space is five-dimensional and 
the regression equation in matrix form becomes equation (3). 

𝑦𝑝 = 𝑤𝟏𝒙𝟏 + 𝑤𝟐𝒙𝟐 + 𝑤𝟑𝒙𝟑 + 𝑤𝟒𝒙𝟒 + 𝑤𝟓𝒙𝟓 + 𝑤𝑜   (3) 

MLR trains learning algorithms using labelled training data to understand 
the relationship between many features and an outcome. The result is a 
trained model. The trained model can then be leveraged to predict the 
outcome of new input data that were not seen before. 

2.4.2 Random Forest (RF) 

RF is an ensemble technique capable of performing both regression and 
classification tasks. Being an ensemble means that RF combine multiple 
decision trees through a technique called Bootstrap and Aggregation, 
commonly known as bagging. The basic idea behind this is to combine 
multiple decision trees in determining the final output rather than relying 
on individual decision trees. RFs combine large number of decision tree 
models built on different sets of bootstrapped examples. Thus, the output 
does not depend on one decision tree but on multiple decision trees. RF 
has multiple decision trees as base learning models, and so we randomly 
perform row sampling and feature sampling from the dataset forming 
sample datasets for every model. This part is called bootstrap. In the case 
of a regression problem, the final output is the mean of all the outputs. This 
part is called aggregation.  

According to Cutler et al., (2011), for a p-dimensional random vector 𝑋 =
(𝑋1, . . . , 𝑋𝑝) 

𝑇 representing predictor variables and a random variable 𝑌

representing the real-valued target variable, an unknown joint 
distribution 𝑃𝑋𝑌(𝑋, 𝑌) is assumed. The goal is to find a prediction function 
𝑓(𝑋) for predicting 𝑌. The prediction function is determined by a loss 
function 𝐿(𝑌, 𝑓(𝑋)) and defined to minimize the expected value of the loss 

 𝐸𝑋𝑌 (𝐿(𝑌, 𝑓(𝑋)))    (4)  

where the subscripts denote expectation with respect to the joint 
distribution of X and Y. 

Intuitively, 𝐿(𝑌, 𝑓(𝑋)) is a measure of how close 𝑓(𝑋) is to 𝑌; it penalizes 
values of 𝑓(𝑋) that are a far away from 𝑌. Typical choices of L are squared 
error loss 𝐿(𝑌, 𝑓(𝑋))  =  (𝑌 −  𝑓(𝑋))2 for regression.  

It turns out that minimizing  𝐸𝑋𝑌 (𝐿(𝑌, 𝑓(𝑋))) for squared error loss gives 
the conditional expectation 

 𝑓(𝑥)  =  𝐸(𝑌|𝑋 =  𝑥)    (5)  

otherwise known as the regression function. 

2.4.3 Support Vector Regression (SVR) 

SVR is a regression algorithm that finds a hyperplane that best fits data 
points in a continuous space while minimizing the prediction error. This is 
achieved by mapping the input variables to a high-dimensional feature 
space and finding the hyperplane that maximizes the margin (distance) 
between the hyperplane and the closest data points, while also minimizing 
the prediction error.  In contrast to OLS, the objective function of SVR is to 
minimize the coefficients, not the squared error. The error term is instead 
handled in the constraints, where we set the absolute error less than or 
equal to a specified margin, called the maximum error, ϵ (epsilon). We can 
tune epsilon to gain the desired accuracy of our model. Our new objective 
function and constraints are as shown in equations (6) and (7). 

Min
1

2
‖𝑤‖2   (6) 

𝑠. 𝑡. |𝑦𝑖 − 𝑤𝑖𝑥𝑖|
≤ 𝜀   (7) 

The algorithm solves the objective function as best as possible but some of 
the points still fall outside the margins. As such, we need to account for the 
possibility of errors that are larger than ϵ. We can do this with slack 
variables. The concept of slack variables is simple: for any value that falls 
outside of ϵ, we can denote its deviation from the margin as ξ. We know 
that these deviations have the potential to exist, but we would still like to 
minimize them as much as possible. Thus, we can add these deviations to 
the objective function, which becomes equations (8) and (9). 

Min
1

2
‖𝑤‖2

+  𝐶 ∑|𝜉𝑖|

𝑚

𝑖=1

  (8) 

𝑠. 𝑡. |𝑦𝑖 − 𝑤𝑖𝑥𝑖|
≤ 𝜀 + |𝜉𝑖|    (9) 

𝐶 and 𝜉 (error penalty and slack variables respectively) are employed to 
prelude the influence of outliers and avoid overfitting. 

SVR can handle non-linear relationships between the input variables and 
the target variable by using a kernel function to map the data to a higher-
dimensional space, and it works with smaller amount of training samples 
and variables, and remain highly sensitive to variations in the variables 
(Karimi, 2016). This makes it a powerful tool for regression tasks where 
there may be complex relationships between the input variables and the 
target variable. A kernel is a set of mathematical functions that finds a 
hyperplane in the higher dimensional space that fits the data without 
increasing computational cost. The most widely used kernels 
include Linear, Non-Linear, Polynomial, Radial Basis Function 
(RBF) and Sigmoid. By default, RBF is used as the kernel.  

2.4.4 Artificial Neural Network (ANN) 

Recent advances in the field of deep-learning showed that Neural 
Network-based techniques outperform conventional techniques and 
provide effective solutions for many geospatial data analysis tasks 
(Kiwelekar, 2020). Multilayer perceptron (MLP) is a feedforward artificial 
neural network that generates a set of outputs from a set of inputs. An MLP 
is characterized by several layers of input nodes connected as a directed 
graph between the input and output layers. MLP is a deep learning method 
that uses back-propagation algorithm for training the network. The input 
layer consists of the inputs to the network, followed by a hidden layer 
consisting of neurons or hidden units, and then an output layer 
representing classes or patterns. The input pattern is presented to the 
network via the input layer, and the input signals are passed to the nodes 
in the next layer in a feed-forward manner. The summation of the output 
is called the output layer. MLPs are controlled by setting and adjusting 
weights between nodes. Initial weights are usually set at some random 
numbers and then they are adjusted during training. 
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An activation function, 𝑔(𝑥), defines the output of a neuron in terms of the 
linear combination of inputs. Activation functions provide nonlinearity to 
the output because it enhances or damps the values passing through it in 
a non-proportional way. Activation function also controls how well the 
network model learns the training dataset, and also defines the type of 
predictions the model can make. Hidden units can be described as 
accepting a vector of inputs x, computing an affine transformation of 
equation (10), 

𝑧 =  𝑊𝑇𝑥 +  𝑏,   (10) 

and then applying an element-wise nonlinear function 𝑔(𝑧). Most hidden 
units are distinguished from each other only by the choice of the form of 
the activation function 𝑔(𝑧). 

There are different kinds of activation functions: rectified linear unit 
(ReLU), tanh function, and the logistic (sigmoid) function. The most 
commonly used in geospatial data analysis and water resources is the 
logistic activation function and, recently, ReLU.  

Rectified linear unit (ReLU) is an excellent default choice of activation 
function because a model that uses it is easier to train and often achieves 
better performance (Goodfellow et al., 2016). ReLU is a simple function 
that returns the value of the input if it is positive, or value 0 if the input is 
0 or negative. The function is linear for values greater than zero, meaning 
it has a lot of the desirable properties of a linear activation function when 
training a neural networks using back propagation. Yet, it is a nonlinear 
function as negative values are always output as zero. ReLU uses the 
maximum shown in equation (11) as the activation function. 

 𝑔(𝑧) = max{0, 𝑧}.   (11) 

Cost function (or loss function) helps to fit parameters to data, as it gives 
the value of the parameters that fit the data well when it is optimized. It is 
the penalty paid by the learning algorithm for fitting the model. That is, 
cost function gives the cost of predicting outcomes after fitting the model. 
Minimizing the cost function, which is also the optimization objective, the 
learning algorithm’s prediction becomes more accurate, and the algorithm 
better maps the function to the features. According to a study, cost 
function can be defined by equation (12) (Ng, 2003). 

𝐽(𝑤) =  
1

2𝑚
∑ (𝑦𝑝(𝑖) − 𝑦𝑜(𝑖))2𝑚

𝑖=1       (12) 

that measures, for each value of the w’s, how close the 𝑦𝑝(𝑖)’s are to the 

corresponding 𝑦𝑜(𝑖)’s. Feature 𝑥(𝑖) and outcome 𝑦(𝑖) represent the ith 
example in the training set, and m is the number of examples. 

2.5 Implementing the Models 

Four machine learning techniques, Multilinear Regression (MLR), Random 
Forest (RF), Support Vector Regression (SVR), and Artificial Neural 
Network (ANN), were employed for the modelling. The models were 
implemented with codes in Jupyter Notebook® environment where the 
experiments were carried out.  

2.5.1 Experimental Design 

The MLR, RF, SVR and ANN models, which were named model in the codes. 
They were each created as an instance of their respective classes in Scikit 
Learn® library: SGDRegressor, RandomForestRegressor, LinearSVR and 
MLPRegressor, which were each infused with a scaler to scale the dataset 
(Pedregosa et al., 2012).  Thus, we had an empty model. The model was 
then trained or fitted with the training dataset. Training enables the model 
to learn the relationship between the explanatory variables and the target 
variable. After training, the model was ready for predictions. The results 
were evaluated. If the resulting errors were not within tolerance (0.70 ≤ 
R2 ≥ 0.99), then the model needed refining through parameter tuning and 
it was built again. If the errors were within tolerance, then the model 
should be built with the parameters obtained. Afterward, the model was 
validated and tested. 

2.5.2 Training, Validation and Testing 

Training a model is a process of fitting it with a dataset so that the learning 
algorithm can learn the data and the relationships among the features. 
Training prepares the model for and gives it ability to generalize what it 
has learnt to new dataset it has not “seen” before. This allows the model to 
make prediction based on what it has learnt.  A major problem with 
training is called overfitting, a situation in which the model learns well the 
training dataset but unable to generalize and make good predictions with 
new dataset. To avoid overfitting, the dataset was split into three: training 
data, validation data and test data. After training, validation dataset was 
used to assess the model performance. If satisfied, then the model was 
tested with the test dataset, which acts as a new data that the model had 
never “seen” before. The performance of the model when fed with the test 

dataset shows how it will perform when it encounters new data in the 
world. Standard split ratio found in literature are 60-20-20 percent, 70-
15-15 percent, and 80-10-10 percent (Pragati, 2023). 80-10-10 was 
adopted for this study. 

2.5.3 Model Evaluation 

Three error metrics were used to measure the performance of the model: 
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and R 
square (R2). MAE is the average of the absolute difference between two 
continuous variables. For our purposes, we used the mean absolute error, 
expressed in equation (13), to measure the absolute difference between 
observed and predicted values of the target variable.  

𝑀𝐴𝐸 =  
1

𝑚
∑ |𝑌𝑖

𝑜  −  𝑌𝑖
𝑝
|𝑚

𝑖=1    (13) 

Mean Square Error (MSE) more greatly penalizes larger errors and is 
sensitive to outliers due to taking the squared difference between 
variables (Mueller, 2021). Also, MSE is good for values close to zero but 
not for large values. We want both large and small errors to be penalized 
equally so that we could obtain a robust model that would predict well. 
Therefore, we used root mean squared error, which is the square root of 
the value obtained from MSE.  

𝑅𝑀𝑆𝐸 

=  √
1

𝑚
∑(𝑌𝑖

𝑜  −  𝑌𝑖
𝑝
)2

𝑚

𝑖=1

 (14) 

R2 score is the amount of the variation in the target variable which is 
predictable from the explanatory variables as mathematically shown in 
equation 15. It is used to check how well observed results are reproduced 
by the model. Best possible score is 1.0, but the scores are stated as 
percentages in this study. A higher value for R2 is desirable as it indicates 
better results. 
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In the three expressions above, 𝑌𝑖
𝑜, 𝑌𝑖

𝑝
, �̅�𝑖

𝑜, and �̅�𝑖
𝑝

 are observed and 
predicted values and their respective average values; m is the number of 
observations or examples.  

The three error metrics, MAE, RMSE and R2 score, were hard-coded in 
Jupyter Notebook®, and the model performance was measured with the 
three error metrics each time the trained model made a prediction. 

2.5.4 Validation 

The Nyanya-Mararaba dataset where there is no WDN collected with 
questionnaires was validated with Karu dataset where there is WDN 
collected from FCT Water Board. The models were validated with the 
validation dataset during modelling. The two datasets were run through 
each of the models and the results were compared.  

3. RESULTS AND DISCUSSION

3.1 Dataset Validation 

Nyanya-Mararaba dataset collected where there is no WDN is validated 
with Karu dataset where there is WDN. The models were trained, validated 
and tested with both datasets. The results in Table 2, Table 3 and Table 4 
show the results of each model performance with both datasets. During 
training, the average R2 score of the models using dataset where there is 
WDN is 98% while R2 score using dataset where there is no WDN is 63%. 
As shown in Table 5, significance test carried out at 95% confidence level 
on the results declares that there is no significance difference between the 
results of both datasets. Thus, the Nyanya-Mararaba dataset collected with 
questionnaires where there is no WDN is validated with Karu dataset 
where there is WDN collected from FCT Water Board.  

3.2     Model Performance Where There Is WDN and Where There Is 
No WDN 

Table 4, Table5 and Table 6 also show the results of each model 
performance. It is obvious that Random Forest performed better than 
other models. During training, Random Forest gave RMSE of 48 liters and 
R2 is 98% where there is WDN, and RMSE of 83 liters and R2 score of 65% 
where there is no WDN. The performance of each model where there is 
WDN and where there is no WDN is depicted by the graph shown in Figure 
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2. From the graph, it is obvious that the difference between the actual 
volume and predicted volume of water consumed is negligible where there 
is WDN. This shows that the models were well trained; that is, the data was 
well learnt by the models, and the data was well fitted to the models. The 
two sets of graphs show that the difference between actual volume and 
predicted volume of water consumed is larger where there is no WDN than 
where there is WDN. The difference is due to the sources of the two 

datasets. Karu dataset was sourced from water meter readings while 
Nyanya-Mararaba dataset came from field work where number of water 
containers used per day was counted. The results of the significance test 
carried out for the datasets can be extended to the model performances 
since it was the results of their performances that were tested. Thus, the 
significance test shows that there is no significant difference between 
model performance where there is WDN and where there is no WDN. 

Table 4: Model performance during TRAINING 

Model 
Where There is WDN Where There is no WDN 

MAE (litre) RMSE (litre) R2 (%) MAE (litre) RMSE (litre) R2 (%) 

Multilinear Regression 33 91 98 86 110 53 

Random Forest 20 48 99 64 83 73 

Support Vector Regression 254 317 98 76 98 62 

Artificial Neural Network 32 93 98 75 97 63 

Table 5: Model performance during VALIDATION 

Model 
Where There is WDN Where There is no WDN 

MAE (litre) RMSE (litre) R2 (%) MAE (litre) RMSE (litre) R2 (%) 

Multilinear Regression 34 104 97 85 108 51 

Random Forest 26 61 99 72 93 69 

Support Vector Regression 265 329 96 79 104 54 

Artificial Neural Network 35 92 98 81 101 64 

Table 6: Model performance during TESTING 

Model 
Where There is WDN Where There is no WDN 

MAE (litre) RMSE (litre) R2 (%) MAE (litre) RMSE (litre) R2 (%) 

Multilinear Regression 28 77 99 84 108 53 

Random Forest 24 67 98 65 85 72 

Support Vector Regression 288 347 97 92 115 57 

Artificial Neural Network 20 27 97 85 105 58 

3.3 Significance Test 

Significance test was carried out with t-test at 95% confidence level on the 
datasets where there is WDN and where there is no WDN. The null 
hypothesis states that there is no significant difference between dataset 
where there is WDN and dataset where there is no WDN. The p value of 
each model is stated in Table 7. Since the p value is more than 0.05 for the 
models, except Support Vector Regression, there is a reason to accept the 
null hypothesis; that is, there is no significant difference between Karu 

 dataset where there is WDN and Nyanya-Mararaba dataset where there is 
no WDN.  

Null hypothesis: 𝐻0 ∶  𝜇 = 𝜇0, that is, there is no significant difference 
between dataset where there is WDN and where there is no WDN.  

Alternative hypothesis: 𝐻𝑎 ∶  𝜇 ≠ 𝜇0, that is, there is significant difference 
between dataset where there is WDN and where there is no WDN.  

Table 7: Two-tails t-test at 95% confidence level 

Model p value Degrees of freedom Test Result 

Multilinear Regression 0.5756 8 𝐻0 ∶  𝜇 = 𝜇0 

Random Forest 0.2093 8 𝐻0 ∶  𝜇 = 𝜇0 

Support Vector Regression 0.0007 8 𝐻𝑎 ∶  𝜇 ≠ 𝜇0 

Artificial Neural Network 0.3397 8 𝐻0 ∶  𝜇 = 𝜇0 

3.4 Analysis of Variance (ANOVA) 

Two-way ANOVA test was carried out to test model performances within 
the models on one hand, and between the models and where there is 
WDN/where there is no WDN. In the results shown in Table 8 the p-value 
is less than 0.05 within the models, while the p-value is greater than 0.05 
between the models and where there is WDN/where there is no WDN. 

 Thus, the ANOVA test confirms that model performances where there is 
WDN and where there is no WDN are not significantly different, but their 
performances compared to one another are significantly different. Hence, 
Table 9, which shows descriptive statistics from the ANOVA test, confirms 
that Random Forest, with the least average performance error, performed 
better than other models.  

Table 8: Result of two-way ANOVA 

Source of Variation SS df MS F P-value F critical 

Models (Row) 96592.28 3 32197.43 8.575769 0.000104 2.786229 

WDN/NoWDN (Column) 40991.94 17 2411.291 0.642246 0.841357 1.827147 

Error 191477.7 51 3754.465 

Total 329061.9 71 
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Figure 2: Actual volume and predicted volume where there is WDN and where is no WDN 

4. CONCLUSION 

This study examines performance of machine learning models for 
predicting volume of water consumed by poor urban households in 
Nyanya-Mararaba Town where there is no WDN. The dataset of volume of 
water collected with questionnaires where there is no WDN was validated 
with dataset of volume of water consumed where there is WDN. Four ML 
models were coded in Jupyter Notebook; they are multilinear regression 
(MLR), random forest (RF), support vector regression (SVR) and artificial 
neural network (ANN).  The performances of the models were examined. 
All four models, MLR, RF, SVR and ANN, performed considerably well in 
predicting volume of water consumed by the urban poor, as they produced 
RMSE of 110 litres, 83 litres, 98 litres and 97 litres respectively, and R2 
score of 53%, 73%, 62% and 63% respectively, confirming that Random 
Forest performs better than other models. Significance test performed 

with t-test at 95% confidence level shows that there is no significant 
difference between model performances where there is WDN and where 
there is no WDN. 
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Table 9: Descriptive statistics of model performances 

Model Count Sum Average Variance 

Multilinear Regression 18 1399 77.72222 791.7418 

Random Forest 18 1218 67.66667 617.4118 

Support Vector Regression 18 2828 157.1111 11463.4 

Artificial Neural Network 18 1321 73.38889 802.134 
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